

DATA SHEET Hall Effect Current Sensor

P/N: CHB LAE15D150/200M

 $I_{PN} = 50 \sim 300 A$

Feature

- Closed- loop (compensated) current transducer
- Supply voltage: DC ±12~18 V Capable measurement of currents: DC, AC, pulse with galvanic isolation between primary circuit and secondary circuit.

Advantages

- High accuracy
- Easy installation
- Low temperature drift
- Optimized response time
- High immunity to external interference

Applications

- The application of induction cooker
- AC/DC variable-speed drive
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Inverter applications

- Very good linearity
- Can be customized

Electrical data: (Ta=25°C, Vc=±15VDC)									
Parameter Ref	CHB50 LAE15D500M	CHB100 LAE15D100M	CHB200 LAE15D100M	CHB300 LAE15D150M	CHB300 LAE15D60M	CHB500 LAE15D250M			
Rated input Ipn(A)	50	100	200	300	300	500			
Measuring range Ip(A)	0 ~ ±150	0 ~ ±300	0 ~ ±600	0 ~ ±700	0 ~ ±700	0 ~ ±700			
Turns ratio Np/NS (T)	1:1000	1:1000	1:2000	1:2000	1:5000	1:2000			
Output current rms IS(mA)	±50*IP/IPN	$\pm 100*IP/IPN$	±100*IP/IPN	±150*IP/IPN	±60*IP/IPN	±250*IP/IPN			
Secondary coil resistance RS (Ω)	15	15	33	100 (only for referance)	100 (only for referance)	33			
Inside resistance RM (Ω)	[(VC-0.5V)/(IS*0.001)]-RS								
Supply voltage VC(V)	(±12 ~ ±18) ±5%			(±18 ~ ±24) ±5%		(±12 ~ ±18) ±5%			
Accuracy XG(%)	@IPN,T=25°C <±0.5								
Offset current IOE(mA)	@IP=0,T=25°C <±0.2								
Temperature variation of IOE IOT(mA/°C)	@IP=0,-40 \sim +85°C $< \pm 0.5$								
Linearity error εr(%FS)	< 0.1								
Di/dt accurately followed (A/μs)	> 100								
Response time tra(μs)	@90% of IPN < 1.0								

Cheemi Technology Co., Ltd

Cheemi Technology Co., Ltd

Power IC(mA)	consumption		25+Is	
Bandwidth	BW(KHZ)	@-3dB,IPN	DC-100	
Insulation v	oltage Vd(KV)	@50/60Hz, 1min,AC	5.5	

General data:						
Parameter	Value					
Operating temperature TA(°C)	-40 ~ +85					
Storage temperature TS(°C)	- 55∼ +125					
Mass M(g)	130					
Plastic material	PBT G30/G15, UL94- V0;					
	IEC60950-1:2001					
Standards	EN50178:1998					
	SJ20790-2000					

Remarks:

- When the current goes through the primary pin of a sensor, the voltage will be measured at the output end.
- Custom design is available for the different rated input current and the output voltage.
- > The dynamic performance is the best when the primary hole if fully filled with.
- ➤ The primary conductor should be <100°C.

WARNING: Incorrect wiring may cause damage to the sensor.

