

SmartElex Photodetector Breakout – MAX30101

The MAX30101 includes three LEDs and an optical detector in a single package, which
can be utilized as a wearable, biosensor for pulse oximeter and heart-rate
measurements. Other possible applications include proximity sensing and particle
detection by measuring the changes in light that is reflected back from the LEDs.

☠ WARNING: Our products are NOT intended to diagnose or treat any conditions.

Power LED

There is a power status LED to help make sure that your Photodetector Sensor is
getting power. You can power the board either through the polarized connector or
the breakout pins (3.3V and GND) provided. A jumper is available on the back of the
board to remove power to the LED for low-power applications (see Jumpers section
below).

MAX30101

The MAX30101 includes three LEDs and an optical detector in a single package. Behind
the window on the left, are red, green, and IR LEDs. While behind the window on the
right, is a highly sensitive photon detector.

Close up of the MAX30101 sensor.

The working principle of the sensor is that the optical detector measures the changes in
the reflected light that was emitted from the LEDs. This is great for various application
like detecting particles or for photoplethysmography.

(*For more details on the MAX30101, users can check out the datasheet.)

Characteristic Description

Power Supply Voltage: 1.7 - 2.0V
Supply Cuurent: 0.6 - 1.1mA
LED Driver:

• Red/IR: 3.1-5V
• Green: 4.5 - 5.5V

ADC Resolution: 18-bits (65536 Counts)

https://cdn.sparkfun.com/assets/learn_tutorials/1/1/8/0/MAX30101_close_up.jpg

LEDs Wavelength:

• IR: 870 - 900nm
• Red: 650 - 670nm
• Green 530 - 545nm

Power:

• IR: 6.5mW
• Red: 9.8mW
• Green 17.2mW

Photodetector Spectral Range: 640 - 980nm

Temperature Sensor Range: -40 - 85°C
Accuracy: ±1°C

I2C Address 0x57

I2C Address

The Photodetector Sensor’s I2C address, 0x57, is factory set.

Connectors

The simplest way to use the Photodetector Sensor is through the connect system. The
connectors are polarized for the I2C connection and power. (*They are tied to the
corresponding power and I2C breakout pins.)

Breakout Pins

The board also provides six labeled breakout pins. You can connect these lines to the
I2C bus of your microcontroller and power pins (3.3V and GND), if it doesn't have a
connector. The interrupt pin is also broken out to use for triggered events.

Interrupt Pin

The interrupt pins (active high) are used to indicate various states of the ADXL313,
depending on how they are configured and if they are enabled. The INT pins are pulled
down with a 4.7kΩ resistor.

Jumpers

There are three jumpers on the board.

Power LED

Cutting the LED jumper will remove the 1kΩ resistors and PWR LED from

the 3.3V power. This is useful for low power applications

I2C Pull-Up

Cutting the I2C jumper will remove the 2.2kΩ pull-up resistors from the I2C bus. If you
have many devices on your I2C bus you may want to remove these jumpers. Be aware
that these resistors are also part of the transistor logic level shifting circuit.

Interrupt Pull-up

Cutting the INT jumper will remove the 4.7kΩ pull-up resistors from the interrupt pin.

Wiring

3V3

GND

SDA
A SCL

Arduino MAX30101

A5(SCL) SCL

A4(SDA) SDA

3.3V 3V3

GND GND

Arduino Examples

☠ Do not rely on our examples for medical diagnosis or any life saving applications

Note: Particle detection, heart rate measurement, and photoplethysmography (for pulse oximetry) are applications
of the MAX30101. These applications require a fundamental understanding of the operating principles of the sensor
and a conceptual knowledge of the applications. Although, we provide some examples for these applications; they
are primarily for demonstration purposes only and are not supported by SmartElex.

Note: Although there is an example, Maxim has since removed the proximity sensing and particle detection as
functionalities of this sensor in their datasheet.

Arduino Library

Daniel Wiese has written a library to work with the SmartElex Photodetector Sensor –
MAX30101. You can obtain this library through the Arduino Library Manager by
searching for " MAX3010x Sensor library ". Find the one written by Daniel Wiese and
install the latest version.

Example - Heartrate

Once you've got the library installed, open the MAX30105PulseoximeterHeartrate
sketch.

#include <MAX3010x.h>

#include "filters.h"

// Sensor (adjust to your sensor type)

MAX30105 sensor;

const auto kSamplingRate = sensor.SAMPLING_RATE_400SPS;

const float kSamplingFrequency = 400.0;

// Finger Detection Threshold and Cooldown

const unsigned long kFingerThreshold = 10000;

const unsigned int kFingerCooldownMs = 500;

// Edge Detection Threshold (decrease for MAX30100)

const float kEdgeThreshold = -2000.0;

// Filters

const float kLowPassCutoff = 5.0;

const float kHighPassCutoff = 0.5;

// Averaging

const bool kEnableAveraging = true;

const int kAveragingSamples = 50;

const int kSampleThreshold = 5;

void setup() {

 Serial.begin(9600);

 if(sensor.begin() && sensor.setSamplingRate(kSamplingRate)) {

 Serial.println("Sensor initialized");

 }

 else {

 Serial.println("Sensor not found");

 while(1);

 }

}

// Filter Instances

HighPassFilter high_pass_filter(kHighPassCutoff, kSamplingFrequency);

LowPassFilter low_pass_filter(kLowPassCutoff, kSamplingFrequency);

Differentiator differentiator(kSamplingFrequency);

MovingAverageFilter<kAveragingSamples> averager;

// Timestamp of the last heartbeat

long last_heartbeat = 0;

// Timestamp for finger detection

long finger_timestamp = 0;

bool finger_detected = false;

// Last diff to detect zero crossing

float last_diff = NAN;

bool crossed = false;

long crossed_time = 0;

void loop() {

 auto sample = sensor.readSample(1000);

 float current_value = sample.red;

 // Detect Finger using raw sensor value

 if(sample.red > kFingerThreshold) {

 if(millis() - finger_timestamp > kFingerCooldownMs) {

 finger_detected = true;

 }

 }

 else {

 // Reset values if the finger is removed

 differentiator.reset();

 averager.reset();

 low_pass_filter.reset();

 high_pass_filter.reset();

 finger_detected = false;

 finger_timestamp = millis();

 }

 if(finger_detected) {

 current_value = low_pass_filter.process(current_value);

 current_value = high_pass_filter.process(current_value);

 float current_diff = differentiator.process(current_value);

 // Valid values?

 if(!isnan(current_diff) && !isnan(last_diff)) {

 // Detect Heartbeat - Zero-Crossing

 if(last_diff > 0 && current_diff < 0) {

 crossed = true;

 crossed_time = millis();

 }

 if(current_diff > 0) {

 crossed = false;

 }

 // Detect Heartbeat - Falling Edge Threshold

 if(crossed && current_diff < kEdgeThreshold) {

 if(last_heartbeat != 0 && crossed_time - last_heartbeat > 300) {

 // Show Results

 int bpm = 60000/(crossed_time - last_heartbeat);

 if(bpm > 50 && bpm < 250) {

 // Average?

 if(kEnableAveraging) {

 int average_bpm = averager.process(bpm);

 // Show if enough samples have been collected

 if(averager.count() > kSampleThreshold) {

 Serial.print("Heart Rate (avg, bpm): ");

 Serial.println(average_bpm);

 }

 }

 else {

 Serial.print("Heart Rate (current, bpm): ");

 Serial.println(bpm);

 }

 }

 }

 crossed = false;

 last_heartbeat = crossed_time;

 }

 }

 last_diff = current_diff;

 }

}

///END//

Then load it onto your Uno. Open your favorite Serial Terminal to see the printed
values.

