

SmartElex Triple Axis Accelerometer Breakout - LIS3DH

The LIS3DH is a triple axis accelerometer you can use to add translation detection to
your project. The "3D" in LIS3DH refers to the fact that it is a 3DoF, or 3 Degrees of
Freedom. Additionally, it has a few analog inputs to play with, and it has some built in
movement detection features to detect things like free-fall, and to indicate if the FIFO
buffers are full.

This table gives more information as to each pins functionality. The serial port can be
connected as either SPI or I2C, and it uses the same physical pins for both. To get going,
just wire up your choice of interface, supply 3.3v, and ground. Note that you will not
need to use all the pins no matter which communication method you choose.

Connection

Group Name Direction Description I2C SPI

Serial !CS I Chip select (for SPI) NC !CS

SDO O Data output (MISO for SPI) NC MISO

SCL I Data clock SCL SCK

SDA/SDI I/O Data in (SDA for I2C, MOSI for SPI) SDA MOSI

Interrupts I1 O Primary int has FIFO + motion Optional MCU

I2 O Secondary int has motion Optional MCU

ADC A1 I Analog in Optional

A2 I Analog in Optional

A3 I Analog in (unused for temp readings) Optional

Power VCC I 3.3V input Supply

GND I Ground connection (either PTH) Supply

On the bottom, there are two jumpers that correspond to the I2C address and pull-up
enable.

The following options are available:

• The I2C Address Jumper -- Bridge to use alternate address 0x18, otherwise leave
open for 0x19. Leave open for SPI use.

• The I2C Pull-up Enable -- Closed by default, this connects a pull-up resistor
between the I2C lines and VCC. This generally doesn't interfere with SPI
operation, but, if less power consumption is required, carefully cut the copper
traces.

Wiring:

LIS3DH Arduino

SCL A5(SCL)

SDA A4(SDA)

3V3 VCC

GND GND

Example: I2C

Basic Accelerometer Data Collection:

Start with just the basic accelerometer sketch, also called "MinimalistExample" from the library. This will periodically
samples the sensor and displays data as number of Gs detected. Remember, the vertical axis will read 1G while
sitting at rest.

#include "SparkFunLIS3DH.h"

#include "Wire.h"

#include "SPI.h"

LIS3DH myIMU; //Default constructor is I2C, addr 0x19.

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 delay(1000); //relax...

 Serial.println("Processor came out of reset.\n");

 //Call .begin() to configure the IMU

 myIMU.begin();

}

void loop()

{

 //Get all parameters

 Serial.print("\nAccelerometer:\n");

 Serial.print(" X = ");

 Serial.println(myIMU.readFloatAccelX(), 4);

 Serial.print(" Y = ");

 Serial.println(myIMU.readFloatAccelY(), 4);

 Serial.print(" Z = ");

 Serial.println(myIMU.readFloatAccelZ(), 4);

 delay(1000);

}

//END///

Example output:

Processor came out of reset.

Accelerometer:

 X = -0.1481

https://github.com/sparkfun/SparkFun_LIS3DH_Arduino_Library/blob/master/examples/MinimalistExample/MinimalistExample.ino

 Y = -0.1361

 Z = 0.9768

Accelerometer:

 X = -0.1481

 Y = -0.1361

 Z = 0.9768

Accelerometer:

 X = -0.1481

 Y = -0.1361

 Z = 0.9768

Accelerometer:

 X = -0.1481

 Y = -0.1361

 Z = 0.9768

When run, the sketch will display data in Gs to the serial terminal. Every second, the
data is collected and printed.

