

SmartElex ToF Imager - VL53L5CX

The ToF Imager - VL53L5CX breakout board IS built around ST Electronics' VL53L5CX; a state of the art, Time-of-Flight (ToF), multizone ranging sensor enhancing the ST FlightSense product family. This chip integrates a SPAD array, physical infrared filters, and diffractive optical elements (DOE) to achieve the best ranging performance in various ambient lighting conditions with a range of cover glass materials.

Multizone distance measurements are possible up to 8x8 zones with a wide 63° diagonal FoV which can be reduced by software. Thanks to ST Histogram patented algorithms, the VL53L5CX is able to detect different objects within the FoV. The Histogram also provides immunity to cover glass crosstalk beyond 60 cm.

Ideal for 3D room mapping, obstacle detection for robotics, gesture recognition, IoT, laser-assisted autofocus, and AR/VR enhancement, the connector on this sensor makes integration easy.

Hardware Overview

VL53L5CX

The ToF Imager is state of the art, 64 pixel Time-of-Flight (ToF) 4 meter ranging sensors built around the VL53L5CX from ST. To see more details, refer to the datasheet.The 7-bit unshifted I²C address (most commonly used with Arduino) is **0x29**. The 8-bit I²C address of the board is **0x52** for writing and **0x53** for reading.

Power

Ideally power will be supplied by the connector, but if you wish to supply your own power, pins have been broken out along the bottom side of the board labeled 3V3 and GND. The input voltage range should be between **2.7-3.3V**.

I²C

The I²C pins break out the functionality of the connectors. Depending on your application, you can connect to these pins via the plated through holes for SDA and SCL.

INT and RST

The interrupt pin is the interrupt output and defaults to an open-drain output. A 47 k Ω pull-up resistor to IOVDD is included.

The reset pin is the I^2C interface reset pin and is active high. It is pulled to ground with a 47 k Ω resistor.

LP, VDDIO, & VDDA

The pins in this section are specific to the 1"x1" board. LP is a *low power* enable pin. Drive this pin to logic 0 to disable the I^2C comms to reduce power consumption. Drive this pin to logic 1 to enable I^2C comms. This pin is typically only needed when you need to change the I2C address in multidevice systems. A 47 k Ω pull-up resistor to IOVDD is included so it can be left unconnected.

VDDIO/VDDA: These pins are used as an alternate power supply. By default, VDDIO and VDDA are tied together but by opening the PSU jumper they can be isolated. A user must then provide separate VDDIO and VDDA supplies. This is most applicable for users who want to use IO voltages (1.8, 2.8, or 3.3V) separate from AVDD voltages (2.8 or 3.3V) for maximum power reduction.

Jumpers

INT

Cut the **INT** jumper to remove the 47 k Ω pull-up resistor from the INT pin.

I²C

The ToF Imager Sensor has two 2.2 k Ω pull-up resistors attached to the I²C bus by default. If multiple sensors are connected to the bus with the pull-up resistors enabled the parallel equivalent resistance may create too strong of a pull-up for the bus to operate correctly. As a general rule of thumb, disable all but one pair of pull-up resistors if multiple devices are connected to the bus. If you need to disconnect the pull-up resistors they can be removed by cutting the traces on the corresponding jumper highlighted below.

PSU

This jumper is related to the pins specific to the ToF board. By default, VDDIO and VDDA are tied together. Cutting the **PSU** jumper will isolate the power rails. A user must then provide separate VDDIO and VDDA supplies. This is most applicable for users who want to use IO voltages (1.8, 2.8, or 3.3V) separate from AVDD voltages (2.8 or 3.3V) for maximum power reduction.

LED

If minimal power consumption is a concern, or you just don't want that Power LED on the front of the board to light up, go ahead and cut this jumper.

A note on choosing a board: The VL53L5CX is unique in that it requires its firmware to be loaded at power-on over the I2C bus. Because this firmware is ~90k bytes, we recommend a microcontroller with enough flash to store VL53L5CX's firmware as well as your program code.

Software Setup and Programming

Sparkfun has written a simple Arduino library to quickly get started reading data from the ToF Imager. Install the library through the Arduino Library Manager tool by searching for **"SparkFun VL53L5CX"**.

ESP32 Devkit V1	VL53L5CX
D22(SCL)	SCL
D21(SDA)	SDA
3.3V	3V3
GND	GND

Example1_DistanceArray

Hook up your ToF imager to your Artemis Thing Plus via the cables, and click "File > Examples > SparkFun VL53L5CX Arduino Library > Example1_DistanceArray".

#include <Wire.h>

```
#include <SparkFun_VL53L5CX_Library.h> //http://librarymanager/All#SparkFun_VL53L5CX
SparkFun VL53L5CX myImager;
VL53L5CX_ResultsData measurementData; // Result data class structure, 1356 byes of RAM
int imageResolution = 0; //Used to pretty print output
int imageWidth = 0; //Used to pretty print output
void setup()
 Serial.begin(115200);
  delay(1000);
  Serial.println("SparkFun VL53L5CX Imager Example");
  Wire.begin(); //This resets to 100kHz I2C
  Wire.setClock(400000); //Sensor has max I2C freq of 400kHz
  Serial.println("Initializing sensor board. This can take up to 10s. Please wait.");
  if (myImager.begin() == false)
    Serial.println(F("Sensor not found - check your wiring. Freezing"));
   while (1);
  myImager.setResolution(8*8); //Enable all 64 pads
  imageResolution = myImager.getResolution(); //Query sensor for current resolution -
either 4x4 or 8x8
  imageWidth = sqrt(imageResolution); //Calculate printing width
  myImager.startRanging();
void loop()
 //Poll sensor for new data
  if (myImager.isDataReady() == true)
    if (myImager.getRangingData(&measurementData)) //Read distance data into array
      //The ST library returns the data transposed from zone mapping shown in
datasheet
      //Pretty-print data with increasing y, decreasing x to reflect reality
      for (int y = 0 ; y <= imageWidth * (imageWidth - 1) ; y += imageWidth)</pre>
```


Open up your Serial Monitor, make sure the baud rate is set appropriately, and you should see something like the following:

🔍 🔤 СОМЗ								-		×
-										Send
EXa 10:54:57.989	->	SparkFun VL53	BL5CX Imag	ger Example	e					
10:54:57.989	->	Initializing	sensor be	oard. This	can ta	ake up to	10s. Pl	ease wait		- 1
10:55:07.991	->	2013	2030	2027	1998	1993	2042	1500	1319	
10:55:07.991	->	2063	2029	2012	2009	2001	2012	1959	1575	
10:55:07.991	->	2036	2010	1994	1990	2010	1990	2007	2007	
10:55:07.991	->	2061	2037	1987	2009	1994	1998	1992	1981	
10:55:07.991	->	2104	2019	1993	2005	2000	2011	1998	1985	
10:55:07.991	->	2077	2001	2024	1991	2000	1989	1982	1977	
10:55:07.991	->	472	2000	2021	2004	1993	1988	1959	1960	
10:55:07.991	->	378	1978	1979	1992	2008	1994	1990	1964	
10:55:07.991	->									
10:55:08.892	->	2013	2032	2014	2031	1952	1779	1437	1280	
10:55:08.892	->	88	2012	1996	2001	2006	1999	1971	1846	
y1 10:55:08.892	->	2031	2012	2008	2009	2016	2014	1998	1997	
10:55:08.892	->	84	1986	2009	2022	2009	2011	1996	1994	
10:55:08.940	->	2054	2017	1985	2017	2006	1995	1998	2014	
10:55:08.940	->	2045	2010	1991	1995	2021	1968	1983	1978	
10:55:08.940	->	2042	1985	1987	1999	1986	1999	1982	1978	
10:55:08.940	->	2039	2011	1977	1978	1994	1972	2001	2015	
10:55:08.940	->									
10:55:09,892	->	20	15	2120	1868	0	7	1875	1169	
10:55:09.892	->	19	1982	1	2071	2050	1899	2132	1962	
10:55:09.892	->	16	4	0	0	2022	1825	2171	2125	
10:55:09.892	->	18	1964	0	0	2081	1833	6	16	
10:55:09.892	->	14	5	1908	0	2189	2037	1932	2099	
10:55:09.892	->	16	2032	1952	1926	2005	1896	1904	7	
10:55:09.892	->	2019	9	1965	0	2149	1955	1836	1883	
10:55:09.892	->	20	2130	1785	2055	1929	0	0	2145	
10:55:09.939	->									
10:55:10.886	->	18	18	17	17	15	13	13	13	
10:55:10.886	->	21	18	18	12	17	12	12	12	
10:55:10.886	->	20	18	13	12	12	11	11	13	
10:55:10.886	->	22	18	16	14	13	9	10	10	
10:55:10.886	->	22	20	14	14	15	11	10	13	
10.55.10.986	- 1	-21	1.9	15	12	12	1.2	1.2	1.1	