

SmartElex ToF Imager - VL53L5CX

The ToF Imager - VL53L5CX breakout board IS built around ST Electronics' VL53L5CX; a
state of the art, Time-of-Flight (ToF), multizone ranging sensor enhancing the ST
FlightSense product family. This chip integrates a SPAD array, physical infrared filters,
and diffractive optical elements (DOE) to achieve the best ranging performance in
various ambient lighting conditions with a range of cover glass materials.

Multizone distance measurements are possible up to 8x8 zones with a wide 63°
diagonal FoV which can be reduced by software. Thanks to ST Histogram patented
algorithms, the VL53L5CX is able to detect different objects within the FoV. The
Histogram also provides immunity to cover glass crosstalk beyond 60 cm.

Ideal for 3D room mapping, obstacle detection for robotics, gesture recognition, IoT,
laser-assisted autofocus, and AR/VR enhancement, the connector on this sensor makes
integration easy.

Hardware Overview

VL53L5CX

The ToF Imager is state of the art, 64 pixel Time-of-Flight (ToF) 4 meter ranging sensors
built around the VL53L5CX from ST. To see more details, refer to the datasheet.The 7-
bit unshifted I2C address (most commonly used with Arduino) is 0x29. The 8-bit I2C
address of the board is 0x52 for writing and 0x53 for reading.

Power

Ideally power will be supplied by the connector, but if you wish to supply your own
power, pins have been broken out along the bottom side of the board

labeled 3V3 and GND. The input voltage range should be between 2.7-3.3V.

I2C

The I2C pins break out the functionality of the connectors. Depending on your
application, you can connect to these pins via the plated through holes for SDA and
SCL.

INT and RST

The interrupt pin is the interrupt output and defaults to an open-drain output. A 47 kΩ
pull-up resistor to IOVDD is included.

The reset pin is the I2C interface reset pin and is active high. It is pulled to ground with
a 47 kΩ resistor.

LP, VDDIO, & VDDA

The pins in this section are specific to the 1"x1" board. LP is a low power enable pin.
Drive this pin to logic 0 to disable the I2C comms to reduce power consumption. Drive
this pin to logic 1 to enable I2C comms. This pin is typically only needed when you need
to change the I2C address in multidevice systems. A 47 kΩ pull-up resistor to IOVDD is
included so it can be left unconnected.

VDDIO/VDDA: These pins are used as an alternate power supply. By default, VDDIO and
VDDA are tied together but by opening the PSU jumper they can be isolated. A user
must then provide separate VDDIO and VDDA supplies. This is most applicable for users
who want to use IO voltages (1.8, 2.8, or 3.3V) separate from AVDD voltages (2.8 or
3.3V) for maximum power reduction.

Jumpers

INT

Cut the INT jumper to remove the 47 kΩ pull-up resistor from the INT pin.

I2C

The ToF Imager Sensor has two 2.2 kΩ pull-up resistors attached to the I2C bus by
default. If multiple sensors are connected to the bus with the pull-up resistors enabled
the parallel equivalent resistance may create too strong of a pull-up for the bus to
operate correctly. As a general rule of thumb, disable all but one pair of pull-up
resistors if multiple devices are connected to the bus. If you need to disconnect the
pull-up resistors they can be removed by cutting the traces on the corresponding
jumper highlighted below.

PSU

This jumper is related to the pins specific to the ToF board. By default, VDDIO and
VDDA are tied together. Cutting the PSU jumper will isolate the power rails. A user
must then provide separate VDDIO and VDDA supplies. This is most applicable for users
who want to use IO voltages (1.8, 2.8, or 3.3V) separate from AVDD voltages (2.8 or
3.3V) for maximum power reduction.

LED

If minimal power consumption is a concern, or you just don't want that Power LED on
the front of the board to light up, go ahead and cut this jumper.

 A note on choosing a board: The VL53L5CX is unique in that it requires its firmware to be loaded at power-on over
the I2C bus. Because this firmware is ~90k bytes, we recommend a microcontroller with enough flash to store
VL53L5CX's firmware as well as your program code.

Software Setup and Programming

Sparkfun has written a simple Arduino library to quickly get started reading data from
the ToF Imager. Install the library through the Arduino Library Manager tool by
searching for "SparkFun VL53L5CX".

Wiring:

ESP32 Devkit V1 VL53L5CX

D22(SCL) SCL

D21(SDA) SDA

3.3V 3V3

GND GND

Example1_DistanceArray

Hook up your ToF imager to your Artemis Thing Plus via the cables, and click
"File > Examples > SparkFun VL53L5CX Arduino Library > Example1_DistanceArray".

#include <Wire.h>

#include <SparkFun_VL53L5CX_Library.h> //http://librarymanager/All#SparkFun_VL53L5CX

SparkFun_VL53L5CX myImager;

VL53L5CX_ResultsData measurementData; // Result data class structure, 1356 byes of RAM

int imageResolution = 0; //Used to pretty print output

int imageWidth = 0; //Used to pretty print output

void setup()

{

 Serial.begin(115200);

 delay(1000);

 Serial.println("SparkFun VL53L5CX Imager Example");

 Wire.begin(); //This resets to 100kHz I2C

 Wire.setClock(400000); //Sensor has max I2C freq of 400kHz

 Serial.println("Initializing sensor board. This can take up to 10s. Please wait.");

 if (myImager.begin() == false)

 {

 Serial.println(F("Sensor not found - check your wiring. Freezing"));

 while (1) ;

 }

 myImager.setResolution(8*8); //Enable all 64 pads

 imageResolution = myImager.getResolution(); //Query sensor for current resolution -

either 4x4 or 8x8

 imageWidth = sqrt(imageResolution); //Calculate printing width

 myImager.startRanging();

}

void loop()

{

 //Poll sensor for new data

 if (myImager.isDataReady() == true)

 {

 if (myImager.getRangingData(&measurementData)) //Read distance data into array

 {

 //The ST library returns the data transposed from zone mapping shown in

datasheet

 //Pretty-print data with increasing y, decreasing x to reflect reality

 for (int y = 0 ; y <= imageWidth * (imageWidth - 1) ; y += imageWidth)

 {

 for (int x = imageWidth - 1 ; x >= 0 ; x--)

 {

 Serial.print("\t");

 Serial.print(measurementData.distance_mm[x + y]);

 }

 Serial.println();

 }

 Serial.println();

 }

 }

 delay(5); //Small delay between polling

}

///END//

Open up your Serial Monitor, make sure the baud rate is set appropriately, and you
should see something like the following:

https://learn.sparkfun.com/tutorials/terminal-basics
https://cdn.sparkfun.com/assets/learn_tutorials/2/0/0/2/Example1_Output.png

