

SmartElex Distance Sensor - 1.3 Meter, VL53L4CD

The VL53L4CD is Time Of Flight (ToF) sensors. Both uses a VCSEL (vertical cavity surface
emitting laser) to emit a class 1 IR laser (940 nm) and time the reflection to the target.
(You can’t see the laser but cell phones can) What does all this mean? You can measure
the distance to an object up to 4 meters away with millimeter resolution using the
VL53L1X and up to 1.3 meters away with 1 millimeter resolution using the VL53L4CD!

We’ve found the precision of the VL53L1D sensor to be 1mm but the accuracy is
around ±7mm. The minimum read distance of this sensor is 1cm (or 10mm).

Hardware Overview

First, let's check out some of the characteristics of the VL53L1X and VL53L4CD we're
dealing with, so we know what to expect out of the board. Below is a comparison table
for both sensors taken from the datasheet. Typically, the board is powered at 3.3V via
the connector.

Characteristic VL53L1X VL53L4CD

Operating Voltage 2.6V to 3.5V

Power Consumption 20 mW @10Hz -

Current Consumption 18mA 24mA

Measurement Range ~40mm to 4,000mm 1mm to 1300mm

Resolution ±1mm

Light Source Class 1 940nm VCSEL

I2C Address 0x29

Field of View 15° to 27° 18°

Max Read Rate 50Hz 100Hz

Pins

The following table lists all of the VL53L1X and VL53L4CD's pins and their functionality.

Pin Description Direction

GND Ground In

3.3V Power In

SDA Data In

SCL Clock In

INT Interrupt, goes low when data is ready. Out

SHUT Shutdown, can be pulled low to put the IC in
shutdown mode.

In

I2C

The I2C address for each sensor is 0x29 (7-bit unshifted) as stated earlier. You may
notice that the datasheet and library use 0x52, which is the address shifted.

LED

The onboard power LED (PWR) will light up when the board is powered. Exclusively for
the VL53L4CD, this can be disabled by cutting the jumper labeled as LED on the back of
the board.

Sensor and IR Laser

On the left side of each sensor IC is a single photon avalanche diode (SPAD) array. On
the other side of each sensor IC is an invisible IR laser. The wavelength of the lasers
found in the VL53L1X and VL53L4CD is 940nm and are classified as a Class 1 laser
emitter. We found that the sensors worked best when left uncovered in your
application to avoid crosstalk. If you do place a transparent material (material
transmission should be greater than 85%) in front of the sensor, it is recommended to
have an air gap that is as small as possible to avoid errors in sensor readings.

Note: While the IR laser is invisible to the human eye, you can view the laser at an
angle using a camera. If you take out your smartphone and view the sensor through the
camera, you can see the IR laser being emitted from the sensor!

Jumpers

The VL53L1X and VL53L4CD breakout boards include jumpers on the back of the board.
If you need to disconnect any of the jumpers, they can be removed by cutting the
traces on the corresponding jumpers highlighted below.

• I2C - By default, this 3-way jumper is closed by default. The 2.2kΩ pull-up
resistors are attached to the I2C bus; if multiple sensors are connected to the bus

with the pull-up resistors enabled, the parallel equivalent resistance will create
too strong of a pull-up for the bus to operate correctly. As a general rule of
thumb, disable all but one pair of pull-up resistors if multiple devices are
connected to the bus.

• INT - By default, this jumper is closed by default. This is connected to the 10kΩ
pull-up resistor.

• LED - Exclusive to the VL53L4CD, this jumper is closed by default. Cutting this
jumper will disable the PWR LED.

Arduino Library

First, you'll need the SparkFun VL53L1X Arduino library, which is an easy to use
wrapper of ST's driver. This library was originally written for VL53L1X but it can also be
used for the VL53L4CD. You can obtain these libraries through the Arduino Library
Manager. Search for Sparkfun VL53L1X Arduino Library to install the latest version.

Before we get started developing a sketch, let's look at the available functions of the
library.

• boolean init(); --- Initialize the sensor
• void startRanging(); --- Starts taking measurements.
• void stopRanging(); --- Stops taking measurements.
• bool checkForDataReady(); --- Checks if a measurement is ready.
• void setTimingBudgetInMs(uint16_t timingBudget) --- Set the timing budget for a measurement in ms. The

timing budget is the amount of time over which a measurement is taken. This can be set to
any of the following.

o 15
o 20
o 33
o 50
o 100 (default)
o 200
o 500

• uint16_t getTimingBudgetInMs(); --- Get's the current timing budget in ms.
• void setDistanceModeLong(); --- Sets to 4M range.
• void setDistanceModeShort(); --- Sets to 1.3M range
• uint8_t getDistanceMode(); --- Returns 1 for short range, 2 for long range.
• void setIntermeasurementPeriod(uint16_t intermeasurement); --- Set's the period in between

measurements. Must be greater than or equal to the timing budget. Default is 100 ms.
• uint16_t getIntermeasurementPeriod(); --- Returns the intermeasurement period in ms.
• bool checkBootState(); --- Checks whether the device has been booted. Returns true if the device

has been booted.
• uint16_t getSensorID(); --- Get the sensor ID, should be 0xEEAC.
• uint16_t getDistance(); --- Returns the results from the last measurement, distance in mm

• uint16_t getSignalPerSpad(); --- Returns the average signal rate per SPAD (The sensitive pads that
detect light, the VL53L1X has a 16x16 array of these) in kcps/SPAD, or kilo counts per second
per SPAD.

• uint16_t getAmbientPerSpad(); --- Returns the ambient noise when not measuring a signal in
kcps/SPAD.

• uint16_t getSignalRate(); --- Returns the signal rate in kcps. All SPADs combined.
• uint16_t getSpadNb(); --- Returns the current number of enabled SPADs
• uint16_t getAmbientRate(); --- Returns the total ambinet rate in kcps. All SPADs combined.
• uint8_t getRangeStatus(); --- Returns the range status, which can be any of the following.

o 0: No error
o 1: Signal fail
o 2: Sigma fail
o 7: Wrapped target fail

• void setOffset(int16_t offset); --- Manually set an offset for a measurement in mm.
• int16_t getOffset(); --- Get the current offset in mm.
• void setXTalk(uint16_t xTalk); --- Manually set the value of crosstalk in counts per second (cps),

which is interference from any sort of window in front of your sensor.
• uint16_t getXTalk(); --- Returns the current crosstalk value in cps.
• void setDistanceThreshold(uint16_t lowThresh, uint16_t hiThresh, uint8_t window); --- Set bounds for the

interrupt. lowThresh and hiThresh are the bounds of your interrupt while window decides
when the interrupt should fire. The options for window are shown below.

o 0: Interrupt triggered on measured distance below lowThresh.
o 1: Interrupt triggered on measured distance above hiThresh.
o 2: Interrupt triggered on measured distance outside of bounds.
o 3: Interrupt triggered on measured distance inside of bounds.

• uint16_t getDistanceThresholdWindow(); --- Returns distance threshold window option.
• uint16_t getDistanceThresholdLow(); --- Returns lower bound in mm.
• uint16_t getDistanceThresholdHigh(); --- Returns upper bound in mm
• void setROI(uint16_t x, uint16_t y, uint8_t opticalCenter); --- Set the height and width of the ROI in SPADs,

lowest possible option is 4. The center of the ROI you set is based on the table below. Set
the opticalCenter as the pad above and to the right of your exact center.

128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248

129 137 145 153 161 169 177 185 193 201 209 217 225 233 241 249

130 138 146 154 162 170 178 186 194 202 210 218 226 234 242 250

131 139 147 155 163 171 179 187 195 203 211 219 227 235 243 251

132 140 148 156 164 172 180 188 196 204 212 220 228 236 244 252

133 141 149 157 165 173 181 189 197 205 213 221 229 237 245 253

134 142 150 158 166 174 182 190 198 206 214 222 230 238 246 254

135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255

127 119 111 103 95 87 79 71 63 55 47 39 31 23 15 7

126 118 110 102 94 86 78 70 62 54 46 38 30 22 14 6

125 117 109 101 93 85 77 69 61 53 45 37 29 21 13 5

124 116 108 100 92 84 76 68 60 52 44 36 28 20 12 4

123 115 107 99 91 83 75 67 59 51 43 35 27 19 11 3

122 114 106 98 90 82 74 66 58 50 42 34 26 18 10 2

121 113 105 97 89 81 73 65 57 49 41 33 25 17 9 1

120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0

• uint16_t getROIX(); --- Returns the width of the ROI in SPADs
• uint16_t getROIY(); --- Returns the height of the ROI in SPADs
• void setSignalThreshold(uint16_t signalThreshold); --- Programs the necessary threshold to trigger a

measurement. Default is 1024 kcps.
• uint16_t getSignalThreshold(); --- Returns the signal threshold in kcps
• void setSigmaThreshold(uint16_t sigmaThreshold); --- Programs a new sigma threshold in mm.

(default=15 mm)
• uint16_t getSigmaThreshold(); --- Returns the current sigma threshold.
• void startTemperatureUpdate(); --- Recalibrates the sensor for temperature changes. Run this any

time the temperature has changed by more than 8°C
• void calibrateOffset(uint16_t targetDistanceInMm); --- Autocalibrate the offset by placing a target a

known distance away from the sensor and passing this known distance into the function.
• void calibrateXTalk(uint16_t targetDistanceInMm); --- Autocalibrate the crosstalk by placing a target a

known distance away from the sensor and passing this known distance into the function.

WIRING

Arduino VL53L4CD

A5(SCL) SCL

A4(SDA) SDA

3.3V 3V3

GND GND

Arduino Example Code

Now that we have our library installed and we understand the basic functions, let's run
some examples for our distance sensor to see how it behaves.

3V3

GND

SDA
A SCL

Example 1 – Distance Array

To get started with the first example, open up File > Examples > SparkFun VL53L1x 4M
Laser Distance Sensor > Example1_DistanceArray. In this example, we begin by

creating a SFEVL53L1X object called distanceSensor with our wire port, Wire, and then

our shutdown and interrupt pins. Then we initialize our sensor object in

the setup() loop. The code to do this is shown below and is repeated in some form in

all of the examples.Once we've initialized our sensor, we can start grabbing
measurements from it. To do this, we send some configuration bytes to our sensor

using distanceSensor.startRanging() to initiate the measurement. We then wait for

data to become available and when it does, we read it in, convert it from millimeters to

feet, and print it out over serial. The void loop() function that does this is shown below.

#include <Wire.h>

#include "SparkFun_VL53L1X.h" //Click here to get the library:

http://librarymanager/All#SparkFun_VL53L1X

//Optional interrupt and shutdown pins.

#define SHUTDOWN_PIN 2

#define INTERRUPT_PIN 3

SFEVL53L1X distanceSensor;

//Uncomment the following line to use the optional shutdown and interrupt pins.

//SFEVL53L1X distanceSensor(Wire, SHUTDOWN_PIN, INTERRUPT_PIN);

void setup(void)

{

 Wire.begin();

 Serial.begin(115200);

 Serial.println("VL53L1X Qwiic Test");

 if (distanceSensor.begin() != 0) //Begin returns 0 on a good init

 {

 Serial.println("Sensor failed to begin. Please check wiring. Freezing...");

 while (1)

 ;

 }

 Serial.println("Sensor online!");

}

void loop(void)

{

 distanceSensor.startRanging(); //Write configuration bytes to initiate measurement

 while (!distanceSensor.checkForDataReady())

 {

 delay(1);

 }

 int distance = distanceSensor.getDistance(); //Get the result of the measurement

from the sensor

 distanceSensor.clearInterrupt();

 distanceSensor.stopRanging();

 Serial.print("Distance(mm): ");

 Serial.print(distance);

 float distanceInches = distance * 0.0393701;

 float distanceFeet = distanceInches / 12.0;

 Serial.print("\tDistance(ft): ");

 Serial.print(distanceFeet, 2);

 Serial.println();

}

///END//

Opening your serial monitor to a baud rate of 9600 should show the distance between
the sensor and the object it's pointed at in both millimeters and feet. The output
should look something like the below image.

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/4/EX1.PNG

