\ /

-
Smar|Elex

SmartElex Distance Sensor - 1.3 Meter, VL53L4CD

The VL53L4CD is Time Of Flight (ToF) sensors. Both uses a VCSEL (vertical cavity surface
emitting laser) to emit a class 1 IR laser (940 nm) and time the reflection to the target.
(You can’t see the laser but cell phones can) What does all this mean? You can measure
the distance to an object up to 4 meters away with millimeter resolution using the
VL53L1X and up to 1.3 meters away with 1 millimeter resolution using the VL53L4CD!

Distance Sensor
UL53L4CD

We’ve found the precision of the VL53L1D sensor to be 1mm but the accuracy is
around £7mm. The minimum read distance of this sensor is 1cm (or 10mm).

Hardware Overview

First, let's check out some of the characteristics of the VL53L1X and VL53L4CD we're
dealing with, so we know what to expect out of the board. Below is a comparison table
for both sensors taken from the datasheet. Typically, the board is powered at 3.3V via
the connector.




Characteristic

Operating Voltage

Power Consumption

Current Consumption

Measurement Range

Resolution

Light Source

[:C Address

Field of View

Max Read Rate

Pins

VL53L1X

2.6V to 3.5V

20 mW @10Hz

18mA

~40mm to 4,000mm

+1mm

VL53L4CD

24mA

Imm to 1300mm

Class 1 940nm VCSEL

0x29

15°to 27°

50Hz

18°

100Hz

The following table lists all of the VL53L1X and VL53L4CD's pins and their functionality.

Pin Description Direction
GND Ground In
3.3V Power In

SDA Data In




SCL Clock In

INT Interrupt, goes low when data is ready. Out

SHUT Shutdown, can be pulled low to put the ICin In
shutdown mode.

I2C

The 12C address for each sensor is 0x29 (7-bit unshifted) as stated earlier. You may
notice that the datasheet and library use 0x52, which is the address shifted.

LED

The onboard power LED (PWR) will light up when the board is powered. Exclusively for
the VL53L4CD, this can be disabled by cutting the jumper labeled as LED on the back of
the board.

Sensor and IR Laser

On the left side of each sensor IC is a single photon avalanche diode (SPAD) array. On
the other side of each sensor ICis an invisible IR laser. The wavelength of the lasers
found in the VL53L1X and VL53L4CD is 940nm and are classified as a Class 1 laser
emitter. We found that the sensors worked best when left uncovered in your
application to avoid crosstalk. If you do place a transparent material (material
transmission should be greater than 85%) in front of the sensor, it is recommended to
have an air gap that is as small as possible to avoid errors in sensor readings.

Note: While the IR laser is invisible to the human eye, you can view the laser at an
angle using a camera. If you take out your smartphone and view the sensor through the
camera, you can see the IR laser being emitted from the sensor!

Jumpers

The VL53L1X and VL53L4CD breakout boards include jumpers on the back of the board.
If you need to disconnect any of the jumpers, they can be removed by cutting the
traces on the corresponding jumpers highlighted below.

o 12C - By default, this 3-way jumper is closed by default. The 2.2kQ pull-up
resistors are attached to the 12C bus; if multiple sensors are connected to the bus




with the pull-up resistors enabled, the parallel equivalent resistance will create
too strong of a pull-up for the bus to operate correctly. As a general rule of
thumb, disable all but one pair of pull-up resistors if multiple devices are
connected to the bus.

o INT - By default, this jumper is closed by default. This is connected to the 10kQ
pull-up resistor.

o LED - Exclusive to the VL53L4CD, this jumper is closed by default. Cutting this
jumper will disable the PWR LED.

Arduino Library

First, you'll need the SparkFun VL53L1X Arduino library, which is an easy to use
wrapper of ST's driver. This library was originally written for VL53L1X but it can also be
used for the VL53L4CD. You can obtain these libraries through the Arduino Library
Manager. Search for Sparkfun VL53L1X Arduino Library to install the latest version.

Before we get started developing a sketch, let's look at the available functions of the
library.

e  boolean init(); --- Initialize the sensor

e  void startRanging(); --- Starts taking measurements.

e void stopRanging(); --- Stops taking measurements.

e bool checkForDataReady(); --- Checks if a measurement is ready.

e void setTimingBudgetinMs(uint16_t timingBudget) --- Set the timing budget for a measurement in ms. The
timing budget is the amount of time over which a measurement is taken. This can be set to
any of the following.

15

20

33

50

100 (default)

200

o 500

e uint16_t getTimingBudgetinMs(); --- Get's the current timing budget in ms.

e void setDistanceModeLong(); --- Sets to 4M range.

e void setDistanceModeShort(); --- Sets to 1.3M range

e uint8_t getDistanceMode(); --- Returns 1 for short range, 2 for long range.

e void setintermeasurementPeriod(uint16_t intermeasurement); --- Set's the period in between
measurements. Must be greater than or equal to the timing budget. Default is 100 ms.

e uint16_t getintermeasurementPeriod(); --- Returns the intermeasurement period in ms.

e  bool checkBootstate(); --- Checks whether the device has been booted. Returns true if the device
has been booted.

e  uint16_t getSensorID(); --- Get the sensor ID, should be OXEEAC.

e  uint16_t getDistance(); --- Returns the results from the last measurement, distance in mm

o O O O O O




uint16_t getSignalPerSpad(); --- Returns the average signal rate per SPAD (The sensitive pads that
detect light, the VL53L1X has a 16x16 array of these) in kcps/SPAD, or kilo counts per second
per SPAD.
uint16_t getAmbientPerSpad(); --- Returns the ambient noise when not measuring a signal in
kcps/SPAD.
uint16_t getSignalRate(); --- Returns the signal rate in kcps. All SPADs combined.
uint16_t getSpadNb(); --- Returns the current number of enabled SPADs
uint16_t getAmbientRate(); --- Returns the total ambinet rate in kcps. All SPADs combined.
uint8_t getRangeStatus(); --- Returns the range status, which can be any of the following.

o 0:Noerror

o 1:Signal fail

o 2:Sigma fail

o 7:Wrapped target fail
void setOffset(int16_t offset); --- Manually set an offset for a measurement in mm.
int16_t getOffset(); --- Get the current offset in mm.
void setXTalk(uint16_t xTalk); --- Manually set the value of crosstalk in counts per second (cps),
which is interference from any sort of window in front of your sensor.
uint16_t getXTalk(); --- Returns the current crosstalk value in cps.
void setDistanceThreshold(uint16_t lowThresh, uint16_t hiThresh, uint8_t window); --- Set bounds for the
interrupt. lowThresh and hiThresh are the bounds of your interrupt while window decides
when the interrupt should fire. The options for window are shown below.

o 0:Interrupt triggered on measured distance below lowThresh.

o 1:Interrupt triggered on measured distance above hiThresh.

o 2:Interrupt triggered on measured distance outside of bounds.

o 3:Interrupt triggered on measured distance inside of bounds.
uint16_t getDistanceThresholdWindow(); --- Returns distance threshold window option.
uint16_t getDistanceThresholdLow(); --- Returns lower bound in mm.
uint16_t getDistanceThresholdHigh(); --- Returns upper bound in mm
void setROI(uint16_t x, uint16_t y, uint8_t opticalCenter); --- Set the height and width of the ROl in SPADs,
lowest possible option is 4. The center of the ROl you set is based on the table below. Set
the opticalcenter as the pad above and to the right of your exact center.

128 (136|144 |152| 160|168 | 176|184 192|200 | 208 | 216 | 224 | 232 | 240 | 248

129(137|145|153| 161|169 |177|185(193|201 (209|217 (225|233 |241 249

130( 138|146 (154|162 |170| 178|186 (194|202 (210|218 (226|234 | 242|250

131({139|147 (155|163 |171|179|187 (195|203 |211|219(227|235|243|251

132 (140|148 | 156|164 |172| 180|188 (196|204 [ 212 | 220|228 | 236 | 244 | 252

133(141|149|157|165|173| 181|189 (197|205 (213|221(229|237|245|253




13411421150 158|166 | 174|182 | 190|198 |206|214|222|230| 238|246 | 254

135|143 |151|159|167|175|183|191|199|207|215|223|231|239|247|255

1271119111103 |95 |87 |79 |71 |63 |55 |47 |39 |31 |23 |15 |7

126|118|110|102|94 |86 |78 |70 |62 |54 |46 |38 |30 (22 |14 |6

125|117|109|101|93 |8 |77 |69 |61 |53 |45 |37 |29 |21 |13 |5

1241116108 |100|92 |84 |76 |68 |60 |52 |44 |36 |28 |20 |12 |4

1231115110799 |91 |83 |75 |67 |59 |51 |43 |35 |27 |19 |11 (3

1221114|1106|98 |90 |82 |74 |66 |58 |50 |42 |34 |26 |18 |10 (2

1211113|105|97 |89 |81 |73 |65 |57 |49 |41 |33 |25 (17 |9 1

1201112|104|96 |88 |80 |72 |64 |56 |48 |40 |32 |24 |16 |8 0

uint16_t getROIX(); --- Returns the width of the ROl in SPADs

uint16_t getROIY(); --- Returns the height of the ROl in SPADs

void setSignalThreshold(uint16_t signalThreshold); --- Programs the necessary threshold to trigger a
measurement. Default is 1024 kcps.

uint16_t getSignalThreshold(); --- Returns the signal threshold in kcps

void setSigmaThreshold(uint16_t sigmaThreshold); --- Programs a new sigma threshold in mm.
(default=15 mm)

uint16_t getSigmaThreshold(); --- Returns the current sigma threshold.

void startTemperatureUpdate(); --- Recalibrates the sensor for temperature changes. Run this any
time the temperature has changed by more than 8°C

void calibrateOffset(uint16_t targetDistancelnMm); --- Autocalibrate the offset by placing a target a
known distance away from the sensor and passing this known distance into the function.
void calibrateXTalk(uint16_t targetDistancelnMm); --- Autocalibrate the crosstalk by placing a target a
known distance away from the sensor and passing this known distance into the function.




WIRING

? 4] L S '
X -
. BCL .
m 0

AREF
GND
13
12

~11 (i | [
~10
2 )
8

—> GND

—> 3V3

(~}Md) TYIIDIG

NWwWasUON

—> SDA

—> SCL

i
o =

>
; 88
$ o
5 —
£ =
H o .
=
: <
z
.- . » =

Arduino VL53L4CD
A5(SCL) SCL
A4(SDA) SDA

3.3V 3V3
GND GND

Arduino Example Code

Now that we have our library installed and we understand the basic functions, let's run
some examples for our distance sensor to see how it behaves.




Example 1 — Distance Array

To get started with the first example, open up File > Examples > SparkFun VL53L1x 4M
Laser Distance Sensor > Examplel_DistanceArray. In this example, we begin by
creating a SFEVL53L1X object called distanceSensor with our wire port, Wire, and then
our shutdown and interrupt pins. Then we initialize our sensor object in

the setup() loop. The code to do this is shown below and is repeated in some form in
all of the examples.Once we've initialized our sensor, we can start grabbing
measurements from it. To do this, we send some configuration bytes to our sensor
using distanceSensor.startRanging() to initiate the measurement. We then wait for
data to become available and when it does, we read it in, convert it from millimeters to
feet, and print it out over serial. The void loop() function that does this is shown below.

#include <Wire.h>
#include "SparkFun_VL53L1X.h"

#tdefine SHUTDOWN_PIN 2
#tdefine INTERRUPT_PIN 3

SFEVL53L1X distanceSensor;

setup(
Wire.begin();

Serial.begin(115200);
Serial.println("VL53L1X Qwiic Test");

if (distanceSensor.begin() != 9)

{

Serial.println("Sensor failed to begin. Please check wiring. Freezing...");
while (1)

J

}

Serial.println("Sensor online!");

loop(

distanceSensor.startRanging();
while (!distanceSensor.checkForDataReady())




{
delay(1);

}

distance = distanceSensor.getDistance();

distanceSensor.clearInterrupt();
distanceSensor.stopRanging();

Serial.print("Distance(mm): ");
Serial.print(distance);

distancelnches = distance * 0.0393701;
distanceFeet = distanceInches / 12.0;

Serial.print("\tDistance(ft): ");
Serial.print(distanceFeet, 2);

Serial.println();

}
[11111111111711171177111711/771////////////END////////11//11//11//711//11//11/111/11]]]

Opening your serial monitor to a baud rate of 9600 should show the distance between
the sensor and the object it's pointed at in both millimeters and feet. The output
should look something like the below image.

£ COM6 - 0 X
| Send
VLS3L1X Qwiic Test 2

~

|Distance (mm) : 432 Distance(ft): 1.42

|Distance (mm) : 435 Distance(ft): 1.43

|Distance (mm) : <39 Distance(fr): 1.44

1l
b

Distance (mm) : Distance(fr): 1.45

Distance (mm): 432 Distance(ft): 1.42
|Distance (mm): 44 Distance(ft): 1.44
:D;sta::e(nn): 43 Distance(ft): 1.43
|Distance (mm) : 42 Distance(ft): 1.41
|Distance (mm): 43 Distance (ftr): 1.44
ED;:La:::(nn): 43 Distance(ft): 1.43

[[] Autoscrol

&
O O W o Wwnmon o wwLmo

Distance (mm) : 43 Distance(ft): 1.43
Distance(mm): 43 Distance(fc): 1.44
ED;sLa:;e(mm): <7 Distance(fr): 1.54
|Distance (mm) : 52 Distance(ft): 1.74
|Distance (mm) : 57 Distance(fc): 1.87
|Discance (mm) : 53 Distance(fr): 1.77
|Distance (mm) : 547 Distance(ft): 1.79

Nolneendng

v Clear output



https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/7/8/4/EX1.PNG

