

SmartElex Digital Temperature Sensor - AS6212

The AS6212 is a highly accurate and power efficient digital temperature sensor with a
wide temperature sensing range (-40°C to 125°C) from ams AG. The AS6212 boasts a
host of features including a configurable alert pin that can trigger when temperature
data exceeds user-defined temperature thresholds. Read more on configuring the alert
pin and temperature thresholds in the Arduino sections of this guide as well as in
the AS6212 Datasheet. The AS6212 also features a sleep/low power mode that works
in tandem with a Single Shot measurement mode to wake the device, retrieve stored
temperature data and return it to sleep mode.

The AS6212 accepts a supply voltage between 1.7V and 3.6 and typically
consumes 6µA during normal temperature conversions and 0.1µA on standby. The
AS6212 normally runs at 3.3V and receives power either through the connectors or the
dedicated 3.3V and GND PTH pins.

The breakout design isolates the AS6212 from the rest of the PCB as much as possible
to minimize ambient heat from interfering with temperature data. The table below
outlines the temperature data accuracy across the AS6212's temperature
measurement range:

I2C Interface

As the name of this breakout suggests, the board routes the AS6212's I2C pins to a pair
of connectors as well as a 0.1"-spaced PTH header for users who prefer a soldered
connection. The AS6212 supports both fast (max 400kHz) and high-speed (max
3.4MHz) clock frequencies and has eight configurable I2C addresses (default is 0x48).
Select the address by adjusting the labeled jumpers.

The Alert/AD1 and AD0 pins are also broken out to the same PTH header as the I2C pins
to interact with. The Alert pin can be enabled to act as an external hardware interrupt
for an attached microcontroller.

Solder Jumpers

The Digital Temperature Sensor Breakout - AS6212 (has four solder jumpers
labeled LED, I2C, AD0 and AD1. The LED jumper connects the Power LED anode
to 3.3V via a 1kΩ resistor. The jumper is CLOSED by default. Open the jumper to disable
the Power LED and reduce the total current draw of the board. The I2C jumper ties the
SDA and SCL lines to 3.3V via a pair of 2.2kΩ resistors and is CLOSED by default. Open
the jumper to disable the pull-up resistors.

Note: Recommended practice suggests to only have a single pair of pull-up resistors on
an I2C bus to avoid creating too strong of a parallel resistance on the bus. If you disable
the pull-ups on this breakout to use a separate pair, make sure the entire bus is
operating at the appropriate logic level (in this case, 3.3V) or the lines are
properly shifted to avoid damaging this or other devices on the bus.

Temperature Range Temperature Accuracy

−10°C to 65°C ±0.2°C

−40°C to −10°C and 65°C to 85°C ±0.3°C

85°C to 125°C ±0.5°C

The AD0 and AD1 jumpers control the I2C address as well as enabling/disabling the
Alert pin. By default, these two-way jumpers connect the AD0 pin to Ground and the
Alert/AD1 pin to 3.3V to enable the Alert pin and set the I2C address to 0x48.

ALERT/AD1 Jumper Net AD0 Jumper Net Alert Pin Functionality I2C Address

VCC (PU) GND Enabled 0x48 (Default)

VCC (PU) VCC Enabled 0x49

VCC (PU) SDA Enabled 0x4A

VCC (PU) SCL Enabled 0x4B

SCL GND Disabled 0x44

SCL VCC Disabled 0x45

SCL SDA Disabled 0x46

SCL SCL Disabled 0x47

GND GND Disabled 0x48

GND VCC Disabled 0x49

GND SDA Disabled 0x4A

GND SCL Disabled 0x4B

Adjust these jumpers to change the address and/or disable the Alert pin. The table
above outlines the various settings these jumpers can be set to.

Wiring & Test
You can easily wire this breakout to any microcontroller, we'll be using an Arduino.
For another kind of microcontroller, just make sure it has I2C, then port the code.

Arduino AS6212
SCL(A5) SCL

SDA(A4) SDA

3.3v 3V3
GND GND

• Connect Vin to the power supply 3.3V.
• Connect GND to common power/data ground
• Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO &

'328 based Arduino, this is also known as A5, on a Mega it is also known
as digital 21 and on a Leonardo/Micro, digital 3

3V3

GND

SDA
A SCL

• Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO &
'328 based Arduino, this is also known as A4, on a Mega it is also known
as digital 20 and on a Leonardo/Micro, digital 2

The AS6212 has a default I2C address of 0x48

AS6212 Arduino Library

The AS6212 Arduino Library helps users configure and pull temperature data from the
AS6212. Install the library through the Arduino Library Installer by searching for "
SparkFun AS6212".

Library Functions

The list below outlines the functions included in the AS6212 Arduino Library along with
short descriptions of what they do.

Class

Construct the AS6212 object in the global class. The examples use sensor as the

AS6212 breakout object.

• AS6212 sensor;

Device Setup and Settings

• bool begin(uint8_t sensorAddress, TwoWire &wirePort); - Initialize the AS6212

board at a specified address on a selected port. If left empty, default values are
used for the address (0x48) and Wire port.

• bool setDefaultSettings(); - Set the AS6212 CONFIG register to default/factory

settings. This helps quickly return the sensor to default settings if anything in the
CONFIG register has been changed as adjustments to the CONFIG register remain
through power cycles.

• uint8_t getAddress(); - Returns the device's I2C address.

• bool getAlertStatus(); - Returns the status of the Alert bit.

• void setConsecutiveFaults(int faults); - Sets the number of consecutive faults

(temperature above THigh) to occur before the Alert pin state adjusts.

Acceptable values are 1,2,3 and 4.

• uint8_t getConsecutiveFaults(); - Returns the value set

for setConsecutiveFaults();.

• void setInterruptMode(bool mode); - Set the AS6212 Alert pin to operate in

Interrupt mode.

• bool getInterruptMode(); - Read whether the Alert pin is set to operate in

Interrupt mode.

• void setConversionCycleTime(uint8_t cycleTime =

AS6212_CONVERSION_CYCLE_TIME_250MS); - Sets the time between

temperature conversions in milliseconds. Acceptable entries are: 125MS, 250MS,
1000MS or 4000MS.

• uint16_t getConversionCycleTime(); - Returns the value set for Conversion Cycle

Time in milliseconds.

• void setAlertPolarity(bool polarity); - Set the polarity of the Alert pin output to go

either HIGH or LOW when triggered. Default is LOW/0.

• bool getAlertPolarity(); - Returns the value set for the Alert polarity bit. 0 for

active LOW or 1 for active HIGH.

• void sleepModeOn(); - Put the AS6212 into Sleep Mode. The device must be in

Sleep Mode for Single Shot measurements to be made.

• void sleepModeOff(); - Clears the Sleep Mode bit in the config register and after

reseting the SM bit to 0 the device returns to continuous conversion mode.

• bool getSleepMode(); - Returns the Sleep Mode bit status as a boolean.

• void triggerSingleShotConversion(); - Tell the AS6212 to perform a Single Shot

temperature conversion.

• bool getSingleShotStatus(); - Returns the Single Shot mode bit status as a

boolean. 0 for no conversion ongoing/conversion finished. 1 for start Single Shot

conversion/conversion ongoing.

• void setConfig(uint16_t targetState); - Legacy function for users who wish to

interact directly with the CONFIG register. Refer to section 6.2 in the AS6212
Datasheet for a detailed description of this regsiter and the adjustable bits in it.

• uint16_t readConfig(); - Returns the settings in the CONFIG register as an

unsigned integer.

Temperature Data

• float readTempC(); - Returns the recorded temperature in degrees Celsius.

• float getTLowC(); - Returns the temperature value set for setTLowC.

• bool setTLowC(int16_t lowLimit); - Sets the temperature in °C for low

temperature threshold. Used for the alert pin temperature limits.

• float getTHighC(); - Returns the temperature value set for setTHighC.

• bool setTHighC(int16_t highLimit); - Sets the temperature in °C for the high

temperature threshold. Used for the alert pin temperature limits.

• float readTempF(); - Returns the recorded temperature in degrees Fahrenheit.

• float getTLowF(); - Returns the temperature value set for setTLowF.

• bool setTLowF(int16_t lowLimit); - Sets the temperature in °F for low

temperature threshold. Used for the alert pin temperature limits.

• float getTHighF(); - Returns the temperature value set for setTHighF.

• bool setTHighF(int16_t highLimit); - ets the temperature in °F for high

temperature threshold. Used for the alert pin temperature limits.

Arduino Examples

The SparkFun AS6212 Arduino Library includes ten examples to showcase the various
capabilities and settings of the AS6212. In this section we'll take an in-depth look at
most of those examples and highlight pertinent bits of code where necessary. The
examples build on each other so it may help to go through them in sequential order.

Prior to uploading the examples, let's take a quick look at the setup function used in all
examples:

COPY CODEif (sensor.begin() == false)
{
 Serial.println("AS6212 Qwiic failed to respond. Please check wiring and possibly the I
2C address. Freezing...");
 while (1);
};

After uploading any of the examples, open the Arduino serial monitor with the baud
set to 115200. If the AS6212 fails to initialize on the bus, the code freezes and prints
out "AS6212 Qwiic failed to respond. Please check wiring and possibly the I2C address.
Freezing...".

If you see this message, check the connection between the breakout and controller and
make sure the AS6212 is either set to the default address or

the sensor.begin(); function is adjusted to the correct address. Refer to Example 2 -

Different I2C Address for a quick demonstration of initializing the AS6212 on an
alternate address.

Each example also includes a quick call of the setDefaultSettings(); function to return

the AS6212 to default settings as adjustments to the CONFIG register (e.g. conversion
cycle time, interrupt mode, alert pin polarity) remain through power cycles.

Example Code

#include "SparkFun_AS6212_Qwiic.h" //Click here to get the library: http://librarymanager/All#SparkFun_AS6212

#include <Wire.h>

AS6212 sensor;

//Initialize temperature variables as floats

float tempC;

float tempF;

void setup(){

 Serial.begin(115200);

 Serial.println("SparkFun AS6212 Qwiic Example 1 - Basic Readings");

 Wire.begin();

 // Check to see if AS6212 Qwiic is present on the bus

 // Note, here we are calling begin() with no arguments = defaults (address:0x48, I2C-port:Wire)

 if (sensor.begin() == false)

 {

 Serial.println("AS6212 Qwiic failed to respond. Please check wiring and possibly the I2C address. Freezing...");

 while (1);

 };

}

void loop(){

 tempC = sensor.readTempC();

 tempF = sensor.readTempF();

 Serial.println();

 Serial.print("Temperature (°C): ");

 Serial.print(tempC, 6); //Reads out 6 characters of the temperature float

 Serial.print("\tTemperature (°F): ");

 Serial.println(tempF, 6); //Reads out 6 characters of the temperature float

 delay(1000);

}

Example 1 - Basic Readings

The first example in the library demonstrates how to initialize the AS6212 on the I2C
bus and retrieve temperature data from the sensor in both °C and °F. Open the
example by navigating to File > Examples > SparkFun AS6212 Arduino Library >
Example_01_BasicReadings. Select the appropriate Board and Port and click upload.
Assuming the upload was successful, open the serial monitor with the baud set
to 115200.

https://cdn.sparkfun.com/assets/learn_tutorials/1/9/8/9/Example1-Serial_Monitor.png

After initializing, the code prints out temperature data recorded by the AS6212 in both
°C and °F every second. Try breathing on the sensor or gently press your finger to it and
watch the temperature data change.

