

SmartElex BMP280- I2C or SPI Barometric Pressure &

Altitude Sensor Breakout Board

Bosch has stepped up their game with their new BMP280 sensor, an environmental
sensor with temperature, barometric pressure that is the next generation upgrade
to the BMP085/BMP180/BMP183. This sensor is great for all sorts of weather
sensing and can even be used in both I2C and SPI!

This precision sensor from Bosch is the best low-cost, precision sensing solution for
measuring barometric pressure with ±1 hPa absolute accuracy, and temperature
with ±1.0°C accuracy. Because pressure changes with altitude, and the pressure
measurements are so good, you can also use it as an altimeter with ±1 meter
accuracy.

The BMP280 is the next-generation of sensors from Bosch, and is the upgrade to
the BMP085/BMP180/BMP183 - with a low altitude noise of 0.25m and the same
fast conversion time. It has the same specifications, but can use either I2C or SPI.
For simple easy wiring, go with I2C. If you want to connect a bunch of sensors
without worrying about I2C address collisions, go with SPI.

Power Pins:

• Vin - this is the power pin. Since the sensor chip uses 3 VDC, we have
included a voltage regulator on board that will take 3-5VDC and safely convert
it down. To power the board, give it the same power as the logic level of your
microcontroller - e.g. for a 5V micro like Arduino, use 5V

• 3Vo - this is the 3.3V output from the voltage regulator, you can grab up to
100mA from this if you like

• GND - common ground for power and logic

SPI Logic pins:
All pins going into the breakout have level shifting circuitry to make them 3-5V logic
level safe. Use whatever logic level is on Vin!

• SCK - This is the SPI Clock pin, its an input to the chip
• SDO - this is the Serial Data Out / Microcontroller In Sensor Out pin, for data

sent from the BMP280 to your processor
• SDI - this is the Serial Data In / Microcontroller Out Sensor In pin, for data

sent from your processor to the BMP280
• CS - this is the Chip Select pin, drop it low to start an SPI transaction. Its an

input to the chip

If you want to connect multiple BMP280's to one microcontroller, have them share
the SDI, SDO and SCK pins. Then assign each one a unique CS pin.

I2C Logic pins:

• SCK - this is also the I2C clock pin (SCL), connect to your microcontroller's I2C
clock line.

• SDI - this is also the I2C data pin (SDA), connect to your microcontroller's I2C
data line.

• Leave the other pins disconnected

Arduino Test
You can easily wire this breakout to any microcontroller, we'll be using an Arduino.
For another kind of microcontroller, as long as you have 4 available pins it is
possible to 'bit-bang SPI' or you can use two I2C pins, but usually those pins are
fixed in hardware. Just check out the library, then port the code.

I2C Wiring
Use this wiring if you want to connect via I2C interface

Arduino BMP280
SCL(A5) SCK

SDA(A4) SDI
5v OR 3.3v VIN

GND GND

• Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the
microcontroller logic is based off of. For most Arduinos, that is 5V

• Connect GND to common power/data ground
• Connect the SCK pin to the I2C clock SCL pin on your Arduino. On an UNO &

'328 based Arduino, this is also known as A5, on a Mega it is also known
as digital 21 and on a Leonardo/Micro, digital 3

• Connect the SDI pin to the I2C data SDA pin on your Arduino. On an UNO &
'328 based Arduino, this is also known as A4, on a Mega it is also known
as digital 20 and on a Leonardo/Micro, digital 2

SPI Wiring
Since this is a SPI-capable sensor, we can use hardware or 'software' SPI. To make
wiring identical on all Arduinos, we'll begin with 'software' SPI. The following pins
should be used:

Arduino BMP280
D13(SCK) SCK

D12(MISO) SDO

D11(MOSI) SDI

D10(SS) CS
5v OR 3.3v VIN

GND GND

• Connect Vin to the power supply, 3V or 5V is fine. Use the same voltage that
the microcontroller logic is based off of. For most Arduinos, that is 5V

• Connect GND to common power/data ground
• Connect the SCK pin to Digital #13 but any pin can be used later
• Connect the SDO pin to Digital #12 but any pin can be used later
• Connect the SDI pin to Digital #11 but any pin can be used later
• Connect the CS pin Digital #10 but any pin can be used later

Later on, once we get it working, we can adjust the library to use hardware SPI if
you desire, or change the pins to other

Download Adafruit_BMP280 library

To begin reading sensor data, you will need to install the Adafruit_BMP280 library.
It is available from the Arduino library manager so we recommend using that.From
the IDE open up the library manager.

https://github.com/adafruit/Adafruit_BMP280_Library

And type in adafruit bmp280 to locate the library. Click Install
You'll also need to install the Adafruit Unified Sensor library

Example Code

Open up File->Examples->Adafruit_BMP280->bmp280test and upload to your
Arduino wired up to the sensor

#include <Wire.h>

#include <SPI.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME280.h>

#define BME_SCK 13

#define BME_MISO 12

#define BME_MOSI 11

#define BME_CS 10

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BME280 bme; // I2C

//Adafruit_BME280 bme(BME_CS); // hardware SPI

//Adafruit_BME280 bme(BME_CS, BME_MOSI, BME_MISO, BME_SCK); // software SPI

unsigned long delayTime;

void setup() {

 Serial.begin(9600);

 while(!Serial); // time to get serial running

 Serial.println(F("BME280 test"));

 unsigned status;

 // default settings

 status = bme.begin();

 // You can also pass in a Wire library object like &Wire2

 // status = bme.begin(0x76, &Wire2)

 if (!status) {

 Serial.println("Could not find a valid BME280 sensor, check wiring, address, sensor

ID!");

 Serial.print("SensorID was: 0x"); Serial.println(bme.sensorID(),16);

 Serial.print(" ID of 0xFF probably means a bad address, a BMP 180 or BMP

085\n");

 Serial.print(" ID of 0x56-0x58 represents a BMP 280,\n");

 Serial.print(" ID of 0x60 represents a BME 280.\n");

 Serial.print(" ID of 0x61 represents a BME 680.\n");

 while (1) delay(10);

 }

 Serial.println("-- Default Test --");

 delayTime = 1000;

 Serial.println();

}

void loop() {

 printValues();

 delay(delayTime);

}

void printValues() {

 Serial.print("Temperature = ");

 Serial.print(bme.readTemperature());

 Serial.println(" °C");

 Serial.print("Pressure = ");

 Serial.print(bme.readPressure() / 100.0F);

 Serial.println(" hPa");

 Serial.print("Approx. Altitude = ");

 Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));

 Serial.println(" m");

 Serial.print("Humidity = ");

 Serial.print(bme.readHumidity());

 Serial.println(" %");

 Serial.println();

}

Depending on whether you are using I2C or SPI, change the pin names and comment
or uncomment the following lines.

#define BMP_SCK 13
#define BMP_MISO 12
#define BMP_MOSI 11
#define BMP_CS 10

Adafruit_BMP280 bmp; // I2C
//Adafruit_BMP280 bmp(BMP_CS); // hardware SPI
//Adafruit_BMP280 bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK);

Once uploaded to your Arduino, open up the serial console at 9600 baud speed to
see data being printed out

Temperature is calculated in degrees C, you can convert this to F by using the
classic F = C * 9/5 + 32 equation.

Pressure is returned in the SI units of Pascals. 100 Pascals = 1 hPa = 1 millibar.
Often times barometric pressure is reported in millibar or inches-mercury. For
future reference 1 pascal =0.000295333727 inches of mercury, or 1 inch Hg =
3386.39 Pascal. So if you take the pascal value of say 100734 and divide by 3389.39
you'll get 29.72 inches-Hg.

You can also calculate Altitude. However, you can only really do a good accurate
job of calculating altitude if you know the hPa pressure at sea level for your

https://learn.adafruit.com/assets/26864

location and day! The sensor is quite precise but if you do not have the data
updated for the current day then it can be difficult to get more accurate than 10
meters.

Library Reference
You can start out by creating a BMP280 object with either software SPI (where all
four pins can be any I/O) using

Adafruit_BMP280 bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK);

Or you can use hardware SPI. With hardware SPI you must use the hardware SPI
pins for your Arduino - and each arduino type has different pins! Check the SPI
reference to see what pins to use.
In this case, you can use any CS pin, but the other three pins are fixed

Adafruit_BMP280 bmp(BMP_CS); // hardware SPI

or I2C using the default I2C bus, no pins are assigned

Adafruit_BMP280 bmp; // I2C

Once started, you can initialize the sensor with

 if (!bmp.begin()) {
 Serial.println("Could not find a valid BMP280 sensor, check wiring!");
 while (1);
 }

begin() will return True if the sensor was found, and False if not. If you get a False
value back, check your wiring!
Reading temperature and pressure is easy, just call:

bmp.readTemperature()
bmp.readPressure()

Temperature is always a floating point, in Centigrade. Pressure is a 32 bit integer
with the pressure in Pascals. You may need to convert to a different value to match
it with your weather report.

It's also possible to turn the BMP280 into an altimeter. If you know the pressure at
sea level, the library can calculate the current barometric pressure into altitude

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

