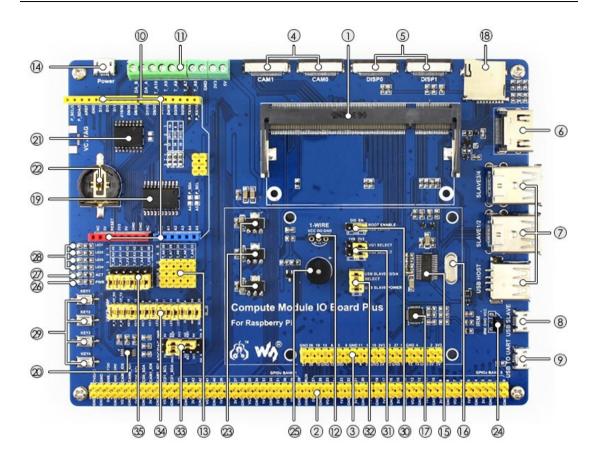


Compute Module 10 Board Plus User Manual

OVERVIEWS

 This is an Expansion board of Raspberry Pi Compute Module series. It is compatible with Compute Module IO Board V3 from Raspberry Pi Foundation, along with various common use components. Supports Compute Module 3, Compute Module 3 Lite, Compute Module 3+ (8G/16G/32G), Compute Module 3+ Lite.


FEATURES

- Compatible with the Compute Module IO Board V3 from the Raspberry Pi Foundation
- Raspberry Pi GPIO header, for connecting sorts of Raspberry Pi HATs
- Arduino connectivity, also supports Arduino shields
- 1-WIRE interface, for connecting single-bus devices like DS18B20
- 4x keys, 4x LEDs, 1x Buzzer, for I/O testing
- Onboard USB HUB, allows connecting more USB devices
- IR receiver, IR remote control is available
- Onboard USB TO UART, for serial debugging
- Sensor interface
- 10-bit ADC, 38KSPS, 11-ch (6-ch for Arduino interface, 5-ch for sensors)
- 16-bit DAC, 2-ch
- Onboard RTC, one of the most common and useful functions

WHAT'S ONBOARD

Version: V1.0, Date: 20171101

- Compute Module interface: for connecting Compute Module 3, Compute Module 3 Lite, Compute Module 3+ (8G/16G/32G) or Compute Module 3+ Lite
- Compute Module GPIO header: breakout all the Compute Module pins
- Raspberry Pi GPIO header: for connecting Raspberry Pi HATs
- 4. **CSI interface:** camera ports, for connecting Raspberry Pi Camera
- DSI interface: display ports, for connecting Raspberry Pi LCD
- 6. HDMI port

- 7. **USB ports:** for connecting USB devices
- 8. **USB SLAVE interface:** allows you to burn system image in to Compute Module 3
- USB TO UART interface: for serial debugging
- Arduino header: for connecting Arduino shields
- 11. AD/DA input/output screw terminals
- 12. 1-WIRE interface: for connecting single-bus devices like DS18B20
- 13. Sensor interface

- 14. **Power port:** 5V 2.5A
- 15. **FE1.1S:** USB HUB chip
- 16. 12MHz crystal
- 17. CP2102: USB TO UART converter
- 18. Micro SD card slot: insert a Micro SD card with pre-burnt system, to start up Compute Module 3 Lite
- 19. TLC1543: AD converter
- 20. DAC8552: 16-bit DAC, 2-ch
- 21. **DS3231:** high-precision RTC chip, I2C interface
- 22. **RTC battery holder:** supports CR1220 batteries
- 23. **Voltage regulator:** 3.3V / 2.5V / 1.8V
- 24. LFN0038K: IR receiver
- 25. Buzzer
- 26. Power indicator
- 27. **ACT indicator:** indicating the Micro SD card status
- 28. User LEDs

- 29. User Keys
- 30. BOOT selection
 - EN: enable the PC to access SD card/eMMC through USB SLAVE
 - **DIS:** the Compute Module will boot from SD card/eMMC
- 31. VGx power selection: config the I/O level
- 32. **USB HUB enable jumper:** HUB enable and USB SLAVE power selection
- ADC/DAC configuration: config the power supply and reference voltage of ADC/DAC
- 34. Peripheral configuration: config the control pins of UART, user keys, user LEDs, 1-WIRE interface, IR receiver, and buzzer
- 35. Arduino AD selection
 - connect 1 and 2: Arduino A0-A5 as digital control pin
 - connect 2 and 3: Arduino A0-A5 as
 AD input

CONTENTS

OverViews	1
Features	1
What's OnBoard	1
HOW TO USE	7
INSTALLATION	7
CM3/CM3+	7
CM3L/CM3+ L	7
Connecting display and Camera	8
Connecting the officail 7inch display	8
Connect Wveshare 7inch HDMI LCD (C)	8
Connect Camera	8
Examples	10
Buzzer	10
pyhton code	10
WiringPi code	10
Expected result	11
DAC	11
BCM2835 code	11
Expected result	11
DS18B20	11
sysfs code	11
python code	12

	Expected result	12
RT	C DS3231	12
	BCM2835 code	12
	WiringPi code	12
	Python code	12
	Expected result	13
IRN	И	13
	BCM2835 code	13
	WiringPi code	13
	Python code	13
	Expected result	14
KE	Y	14
	BCM2835 code	14
	WiringPi code	14
	Python code	14
	Expected result	14
LE	D	14
	BCM2835 code	15
	WiringPi code	15
	Python code	15
	Expected result	15
AD)C	15
	BCM2835 code	15

	WiringPi code	. 16
	Python code	.16
	Expected result	.16
UAI	RT	.16
	WiringPi code	.16
	Python code	. 17
	Expected result	. 17

HOW TO USE

INSTALLATION

CM3/CM3+

If you use Compute Module 3 or Compute Module 3+, you need to write OS image to the embedded EMMC, otherwise they cannot work. Here show you how to write image to EMMC

- 1. Pull the jumpers of USB SLAVE 1/2/3/4 SELECTION (you need to pull two jumpers here), set the BOOT ENABLE USB SLAVE jumpers to EN position.
- 2. Install USB driver. Run the software <u>rpiboot_setup</u> (You can download it from Resource of wiki) to install the drivers and boot tool.
- Connect 5V power adapter to Power interface, plug the USB SLAVE port of IO Board Plus into your host PC USB.
- 4. Run the rpiboot.exe tool. After a few seconds, the CM3 eMMC will be recognized as a disk.
- 5. Run WinDiskImager.exe tool to burn the image to eMMC of CM3.

Note:

Ensure you are not writing to any USB devices while installation.

Because the eMMC of CM3 is only 4G, the image file flashed should be small than 4G. If you want the GUI, you can install it with these commands after installation

sudo apt-get update

sudo apt-get install raspberrypi-ui-mods

CM3L/CM3+ L

- Download the image for CM3L
- 2. Connect the SD card to computer with card reader. The capacity of SD card should larger than 8G.
- 3. Run the Win32DiskImager.exe, choose the CM3L image and burn it to SD card.
- 4. After burning successfully, insert the card to the card slot of IO Board Plus

CONNECTING DISPLAY AND CAMERA

Download the test image provide by us and install them.

Note: Before using, please check that whether the BOOT ENABLE USB SLAVE jumper is set onto the DIS option.

CONNECTING THE OFFICAIL 7INCH DISPLAY

- You need an adapter plate and a 22PIN FFC to connect the display to DISP1 interface of IO Board Plus
- 2. Connect the 5V and GND pin of display to 5V and GND pin of IO Board Plus with wires.
- 3. Connect these pins together with wires:

GPIO0<->CD1_SDA

GPIO1<->CD1_SCL

- 4. Connect the power adapter
- 5. Wait for a few seconds, the display will be powered on.

CONNECT WVESHARE 7INCH HDMI LCD (C)

- Make sure the official 7inch display don't be connect to IO Board Plus. Only without the DISP interface display, the Raspbian will display via HDMI interface by default.
- 2. Connect the HDMI interface of LCD to the HDMI interface of IO Board IO Plus
- 3. Connect power adapter
- 4. Waiting for a few seconds, the LCD will be powered on

CONNECT CAMERA

- Connect camera to the CAM1 interface of IO Board Plus (need <u>RPi Zero V1.3 Camera</u> <u>Cable 15cm</u>)
- 2. Connect these pins together:

GPIO0<->CD1_SDA

GPIO1<->CD1_SCL

GPIO4<->CAM1_IO1

GPIO5<->CAM1_IO0

- 3. Connect to power
- If you want to connect more than one camera, you can connect another to CAM0
 interface.
- 5. Use the CAM0 interface, you need to connect these pins together:

GPIO28<->CD0_SDA

GPIO29<->CD0_SCL

GPIO30<->CAM0_IO1

GPIO31<->CAM0_IO0

6. Execute these commands to use the camera:

raspivid -t 0 -cs 0

raspivid -t 0 -cs 1

Note:

- 1. -cs: Used to choose the camera 0 or 1. Parameter 0 means CAM1, and 1 means CAM0
- Original Raspbian has no boot files for official display and official. If you use original Raspbian, you need to convert dts files which are provided by Raspberry Pi to bin files and copy the bin files to pi/boot/ of Raspbian.

Commands:

sudo dtc -l dts -O dtb -o /boot/dt-blob.bin dt-blob-disp1-cam2.dts

If you use the image provide by us, the OS has been pre-configured. You need to configure it again.

EXAMPLES

While test the examples, you had better connect a display and keyboard to the IO Board Plus.

If you use original Raspbian, you have to install necessary libraries before first. For more information about how to install libraries, please refer to <u>Libraries Installation for RPi</u>.

BUZZER

PYHTON CODE

Execute command to enter the folder of program:

cd /home/pi/CM3/Buzzer_PWM/python/

Execute command to run the program:

sudo ./buzzer.py

WIRINGPI CODE

Execute command to enter the folder of program:

cd /home/pi/CM3/Buzzer_PWM/wiringPi/

Execute command to run the program:

sudo ./buzzer

EXPECTED RESULT

The buzzer will sound, and the sound is changing from low to high, and turn to low again.

Note:

The buzzer will sound even though not be used because of noise. In this case, you can pull the buzzer jumper manually. (the last one of USER JMP)

DAC

BCM2835 CODE

- Connect DA_A and DA_B to LED1 and LED2 of USER JMP separately with wires.
- Execute command to enter the folder of program

cd /home/pi/CM3/DAC8532

Execute command to run the program

sudo ./dac8532

EXPECTED RESULT

The brightness of LED1 and LED2 turns brighter and then turns dim alternately.

DS18B20

Testing this code, you need a DS18B20 module. Insert the DS18B20 into the 1-WIRE interface of IO Board Plus. Note that the semicircle should faces the buzzer. The DS18B20 will produce high temperature even hurt your fingerprint if it is inserted incorrectly. Please be carefully.

SYSFS CODE

• Execute command to enter the folder of program

cd /home/pi/CM3/DS18B20/fs/

• Execute command to run the program

sudo ./ds18b20

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/DS18B20/python/

Execute command to run the program

sudo ./ds18b20.py

EXPECTED RESULT

The terminal will output the temperature value measured by DS18B20.

RTC DS3231

BCM2835 CODE

Execute command to enter the folder of program

cd /home/pi/CM3/DS3231/bcm2835/

• Execute command to run the program

sudo ./ds3231

WIRINGPI CODE

Execute command to enter the folder of program

cd /home/pi/CM3/DS3231/wiringPi/

Execute command to run the program

sudo ./ds3231

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/DS3231/python/

Execute command to run the program

sudo ./ds3231.py

EXPECTED RESULT

The terminal will output the information of date.

IRM

You need an infrared remote controller. Please take the interleaving paper down before using.

BCM2835 CODE

Execute command to enter the folder of program

cd /home/pi/CM3/IRM/bcm2835/

• Execute command to run the program

sudo ./irm

WIRINGPI CODE

Execute command to enter the folder of program

cd /home/pi/CM3/IRM/wiringPi/

Execute command to run the program

sudo ./irm

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/IRM/python/

Execute command to run the program

sudo ./irm.py

EXPECTED RESULT

Press the buttons on Infrared Remote Controller, the terminal will output the corresponding value.

KEY

BCM2835 CODE

Execute command to enter the folder of program

cd /home/pi/CM3/KEY/bcm2835/

Execute command to run the program

sudo ./key

WIRINGPI CODE

Execute command to enter the folder of program

cd /home/pi/CM3/KEY/wiringPi/

Execute command to run the program

sudo ./key

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/KEY/python/

• Execute command to run the program

sudo ./key.py

EXPECTED RESULT

Press the keys (KEY1, KEY2, KEY3, KEY4), corresponding value will outputted on the terminal. For example, if you press KEY1, the terminal will output press the key: 0.

LED

BCM2835 CODE

• Execute command to enter the folder of program

cd /home/pi/CM3/LED/bcm2835/

Execute command to run the program

sudo ./led

WIRINGPI CODE

Execute command to enter the folder of program

cd /home/pi/CM3/LED/wiringPi/

• Execute command to run the program

sudo ./led

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/LED/python/

Execute command to run the program

sudo ./led.py

EXPECTED RESULT

Four LEDs blink alternately.

ADC

BCM2835 CODE

Execute command to enter the folder of program

cd /home/pi/CM3/TLC1543/bcm2835/

Execute command to run the program

sudo ./tlc1543

WIRINGPI CODE

• Execute command to enter the folder of program

cd /home/pi/CM3/TLC1543/wiringPi/

Execute command to run the program

sudo ./tlc1543

PYTHON CODE

Execute command to enter the folder of program

cd /home/pi/CM3/TLC1543/python/

Execute command to run the program

sudo ./tlc1543.py

EXPECTED RESULT

AD information are outputted on terminal.

UART

Connect the USB TO UART interface of IO Board Plus to PC with USB cable. Open the Putty on your PC, set the Baudrate as 115200.

Enter the user name and password to log in the CM3/CM3L (user name is *pi* and password is *raspberry* by default)

Here you need to run the program with keyboard and LCD (On IO Board Plus) instead of Putty.

WIRINGPI CODE

Execute command to enter the folder of program

cd /home/pi/CM3/UART/wiringPi/

Execute command to run the program

sudo ./uart

Version: V1.0, Date: 20171101

PYTHON CODE

• Execute command to enter the folder of program

cd /home/pi/CM3/UART/python/

• Execute command to run the program

sudo ./uart.py

EXPECTED RESULT

Every time run the program, on the Putty, you can see that *Hello World!!!* is printed.

Version: V1.0, Date: 20171101